Exam Complex Analysis April 17, 2012

The exam consists of 5 problems. You should write clearly, argue clearly, and motivate your answers. Points available can be found below.

- 1. Consider the complex function $f(z) = x^3 3y^2 + 2x + i(3x^2y y^3 + 2y)$ for z = x + iy.
 - a. Determine all points in $\mathbb C$ where f(z) is differentiable. Clearly motivate your answer!
 - **b.** Show that f(z) is nowhere analytic.
- 2. Consider the function $g(z) = \frac{e^{\pi z}}{4z^2 + 1}$.
 - a. Let Γ_1 be the circle |z|=2, traversed once in counterclockwise direction. Determine $\int_{\Gamma_1} g(z)dz$.
 - b. Let Γ_2 be the circle $|z|=\frac{1}{4}$, traversed once in counterclockwise direction. Compute $\int_{\Gamma_2}g(z)dz$.
- 3. Let f(z) be analytic on $|z| \le 1$. Let C be the circle |z| = 1, traversed once in the counterclockwise direction.
 - a. Determine $\int_C \left(\frac{1}{z} f(z)\right) dz$.
 - **b.** Prove that $\max_{|z|=1} |\frac{1}{z} f(z)| \ge 1$. (Hint: find an upper bound for the integral appearing in part (a.)).
- **4.** Let f(z) be the function given by $f(z) = \tan z$.
 - a. Determine the zeros of f(z) and their orders.
 - **b.** Determine the singularities of f(z).
 - c. What kind of singularity does f(z) have at $z = \frac{1}{2}\pi$?
 - **d.** Determine the residue of f(z) at $z = \frac{1}{2}\pi$.

turn page!

- Rouché's theorem is a very powerful result to obtain information about the zeros of analytic functions.
 - a. Give a precise formulation of Rouché's theorem.
 - **b.** Consider the equation $2z^5 + 8z 1 = 0$. Determine the number of roots of the equation in the disc |z| < 2.
 - c. Show that the above equation has exactly one root in the disc |z|<1, and that this root real and positve.

Points:

Problem 1: 16

Problem 2: 18

Problem 3: 16

Problem 4: 18

Problem 5: 22

10 points for free